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Abstract-A general theory of instability and self-oscillations accompanying combustion of polydisperse 
assemblages of particles is elaborated on the basis of a model including heat and mass balance equations 
and the kinetic equation governing the particle size distribution. At arbitrary burning kinetics of particles 
and the particle influx rate they are reduced; under the condition of ideal mixing, to only two functional 
integrodifferential equations for the dimensionless temperature and oxidant concentration. Steady com- 
bustion processes are shown to be unstable in many important situations. Depending on physical and 
regime parameters, the break of stability can be realized in either ‘soft’ or ‘hard’ manner giving rise to 
establishing a regular auto-oscillating or a chaotic pulsating regime, respectively. The properties of possible 

slightly non-linear auto-oscillations are studied in greater detail. 

1. INTRODUCTION 

COMBUSTION of dispersed fuels is usually complicated 
by a lot of instabilities and oscillatory phenomena 
being excited by various external agencies (mechanical 
vibrations, acoustic phenomena, electromagnetic 
fields, laser radiation, etc.) [l, 21. Though the mech- 
anisms of energy transfer to disturbances occurring in 
heterogeneous and homogeneous mixtures may differ 
essentially (e.g. strengthening of sound waves in a 
chemically reacting media) [3], the cardinal physical 
reasons for the development of instabilities and onset 
of oscillating regimes are the same in both cases. 

However, the combustion of dispersed fuels sug- 
gests the possibility of some specific type of instability. 
It owes its origin to a mutual interdependence between 
the evolution of a burning particulate system and its 
heat and mass exchange with the environment. The 
instability of such a type takes place not only in a 
chemically active media but also on the collapse of 
metastability in superheated liquids, supersaturated 
solutions and supercooled melts. Under the con- 
ditions of the dominant role of the fluctuating mech- 
anism of nucleation, the above phenomena have been 
analysed in refs. [4, 51. In order to clear up the ques- 
tions in which way and why the mode of reactor 
operation affects the behaviour of the combustion 
process under study as well as to find out what should 
be done to change the regime in a desired direction, an 
adequate physical model of continuous combustion 
is badly needed. This study is concerned with the 
development of instability and self-oscillations in the 
combustion of a polydisperse mixture. 

The principal mechanism of the instability under 
question and the onset of self-oscillations can be rep- 
resented as follows. The injection of particles into 

a combustor first evokes the growth of the furnace 
temperature which leads to the increase in the chemi- 
cal reaction rate. This results in a progressive con- 
sumption of both the particles and the oxidant which 
may not be compensated for by their continuing influx. 
Then, in the course of time a further production rate is 
inevitable which promotes the appearance of excessive 
amounts of fuel and oxidant in the furnace. This again 
accelerates the chemical reaction and the cycle repeats 
itself. Thus, the system displays both a positive reverse 
connection (the heat production in chemical reaction) 
and negative one (the decrease in the chemical reac- 
tion rate due to the consumption of reacting particles). 
It is evident that in the kinetic regime of the com- 
bustion of a single particle, with its rate depending 
greatly on the temperature by the Arrhenius law and 
slightly on the oxidant concentration, the main reason 
for the onset of the instability is the positive reverse 
connection. In the diffusive burning regime the reac- 
tion rate is limited primarily by the injection of oxidant 
into the furnace and depends upon the temperature 
of the reacting mixture only slightly, according to an 
approximately linear law. Thus, in this case the break 
of stability and the onset of self-oscillations are caused 
mainly by the interaction between the burning of par- 
ticles and their continuous injection. The amplitude 
of self-oscillations and the area over which they exist 
might be expected to be smaller than those in the 
kinetic combustion regime. In the ensuing sections the 
specific features of both regimes will be discussed and 
illustrated with reference to the stability break and 
self-oscillatory characteristics. 

The tendency toward the instability of the type 
described above has been noted in refs. [6-g]. It is 
important to point out that publications dealing with 
relevant topics generally employ the method of 
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NOMENCLATURE 

c, Cl, c2 thermal capacity of mixture, gas t time 
and disperse phase, respectively t* dimensionless time 

r” 
oxidant concentration T temperature 
particle size distribution u dimensionless temperature 

9 particle influx rate V dimensionless oxidant concentration 
G oxidant mass flux W reaction heat. 
k, coefficient defined by the chemical 

reaction Greek symbols 
k2 stoichiometric coefficient CL effective heat transfer coefficient 
4 squared amplitude of the basic harmonic P. PI. P2 density of mixture, gas and 

of temperature disturbance dispersed phase, respectively 
r particle radius 0 oscillation frequency. 
s dimensionless particle radius 
St heat transfer Stanton number Subscript 
St, mass transfer Stanton number s steady state regime. 

moments of the particle size distribution function or 
the method of fractions. In these methods a real poly- 
disperse assemblage of particles is subdivided into a 
great number of separate fractions corresponding to 
narrow size ranges. The first method is far from being 
satisfactory except for the case when the burning rate 
of a particle does not depend on its size. This require- 
ment radically restricts the class of problems which 
may be tackled by the method. The method of 
fractions invariably involves cumbersome and tedious 
calculations and frequently does not provide the 
necessary accuracy. 

Evolution equations obtained in the present paper 
for a system of burning particles provide an oppor- 
tunity to carry out comprehensive analytical and 
numerical analyses of unsteady combustion regimes 
without invoking any supplementary hypothesis 
about both the particle burning kinetics and the par- 
ticle inlhrx rate. It should be noted that an earlier 
related work is available [lo] which forms some back- 
ground for the problems under study. The ideas given 
in that work have been essentially generalized and 
extended in the present paper. 

2. PHYSICAL MODEL 

Consider combustion of a solid or liquid fuel in the 
form of a polydisperse assemblage of solid particles 
or droplets. Physical and chemical parameters are 
assumed to be homogeneous throughout a com- 
bustion chamber under study. In practice the homo- 
geneity is attained by means of intensive mixing. 
Agglomeration and breakage of burning particles are 
supposed to be negligible. Heat exchange between the 
combustion chamber and the surroundings is 
described phenomenologically with the help of an 
effective heat transfer coefficient. Let heat and mass 
balance, which governs the oxidant concentration, in 

the furnace per unit volume of the mixture be 
described by the following system of equations : 

pc~=a(T*-T)+4nk,W~~f(t,r)~~~r2dr (1) 

dC 
- = G(C)-hk,k, j:/(t,r) l$lr2dr 
dt 

(2) 

which is supplemented with a kinetic equation govem- 
ing the evolution of the size distribution of the poly- 
disperse assemblage of particles 

The dependence of the inthrx rate of particles on the 
particle size may be arbitrary in principle. The 
coefficient k , , being determined by the reaction mech- 
anism, depends on the stoichiometry of the reaction 
and on the specific surface of the particles. At the cost 
of an appropriate definition of the parameters a and 
T,, the term a(T* - T) can be used to describe not 
only the heat flux to the external media, but also 
the fluxes initiated by the withdrawal of the reaction 
products and by the influx of non-heated particles. 
Fluctuations of the particle burning rate are assumed 
to be negligible. Otherwise, the kinetic equation (3) 
should invqlve an appropriate diffusive term. The 
thermal capacity of the mixture can be written as 

where V, Y, and VZ are the volume of the combustion 
chamber, the free gas volume and the volume of the 
dispersed phase, respectively. If the particles are 
spherical 

s m f(t, r)r 3 dr. 
0 
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Thus equation (4) is arranged to yield aZ aZ b,BgF 

pc = t[~,c,Y+:n(p,c,-p,c,)~~~(r.r)rldr]. at* as = b . (12) By using the method of refs. [4, 51 and applying the 

(6) Laplace transform to equation (12), one obtains 

The moments of the particle size distribution func- 
tion are regarded to be finite due to the condition of 

pZP-z= BgFb, ; , 
0 

z, + z, 
P 

sufficiently rapid decrease of the f(f, r) in the limit 
r --f co. Since just the developed stage of the process, 1 1 
when the influence of initial conditions becomes less 0 c-b. 
significant, is of principal interest, the initial condition 
can be written as f(t, r) = 0 without loss of generality. Applying the inverse Laplace transform 

The particle burning rate may be represented in a solution 
general case in the following form m 

dr Z, = Bb, ; 
OI 

g(x) F(x) eP(s-x) dx 

-bV, OF(r) (7) 
P 0 

TI= 

(13) 

to the 

(14) 

of equation (13) and changing the order of integration 
where b and Fare the arbitrary functions of T, C and in equation (14) yield the Laplace-Mellin formula 
r, respectively. The particular expressions of b and F 
can be found elsewhere [ 11, 121. 

cc 
Z(t,, s) = Bb, 

s 
gCWC4 dx 

o b[u(t* +s-x),u(t* +s-x)1. 

3. PARTICLE SIZE DISTRIBUTION. BASIC 
(15) 

EVOLUTION EQUATIONS In accordance with equations (8), the solution (15) 

Introduce the following variables and parameters determines the particle size distribution in the form of 
the functional depending on the dimensionless tem- 

u = CT- To)/To, u* = (T,- ToYTo, 

Z = fF, u = (C-C,)/C,, 

perature and oxidant concentration. 
Introducing the new variables and the 

parameters 

y = (u-u,)/us, .7 = (u-%)/% 

St = 44 - u*)/P,w,, 

Stanton 

B = (b;g,F;)- “’ 63) St, = usBGs/Co, St* = au* Blp,c,u,, 

where To, Co and F. are the characteristic values of 
the temperature, oxidant concentration and functions 

H= 4n(p,c2-p,c,)B2b,X/3Vp,c,, 

g and F, respectively ; b, = b(T,, C,) and B is the time m m 
scale of the process. x= g(x)F(x) dx r3(s) ds (16) 

The notation used is the same in spite of the change I (5 0 s > 

of the arguments, i.e. and taking into account equations (10) and (1 l), one 

b(u, 4 = WW, WI, g(s) = gI491, 
obtains a system of functional integrodifferential 
equations governing the dynamics of the temperature 

F(s) = Fb-WI, f  (h,s) =f [t(t*), r(41. (9) and oxidant concentration in the combustion chamber 

In view of equations (8), equations (l)-(3) assume 
the following form : 

[l+~~~(~“g(xjF~xj@-l)dx)rl(s)dr] 

b du BG(u) --=- 
4 db Co 

$ $ -St,,,G(u)+4nk,k2B2bfb 
5 * 

m m 
-4nk,k2B2b,b 

s 
Z(t*,c)F(s)r2(s)dE (11) 

dx)F(x) ds 
X 

b(t* +s-x) > 
F(s)r2(s)ds = 0. (18) 

0 

x ;g+sl+y(st+sI*)- 
4xk, WB2b,2b 

I * ~,cJous 

s 
03 m = +4sk, WB2bsbT;’ Z(t*,s)F(s)r2(s)ds, (10) s (1 g(WW dx 

X 
0 0 I b(t* +s-x) > 

F(s)r’(s) ds = 0, (17) 
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For a steady-state combustion regime equations 
(15) (17) and (18) yield simple correlations 

f ,  = BF- ‘(s) 
s 

m g(x)F(x) dx, 
s 

St = 4nk, WB=bf Y/T,p,c,u, 

St,,, = 4nk,k,bfB=Y, 

m 01 
Y= 

I (s 
g(x)F(x)dx F(s)r=(s)ds. (19) 

0 s > 

It is worth noting that equations (19) make it possible 
to calculate parameters St and St,,, (and, hence, CI) if 
experimental data are available on pertinent charac- 
teristics of steady combustion regimes. 

Since equations (17) and (18) are highly non-linear, 
it is necessary to analyse their solutions numerically 
by reversing the functions t*(t) and s(r) at each 
step of integration. However, an opportunity will be 
demonstrated for avoiding rather cumbersome 
numerical calculations while studying unsteady com- 
bustion regimes in the immediate vicinity of the neu- 
tral stability surface of steady-state processes by using 
perturbation methods. 

4. STEADY-STATE REGIME STABILITY 

Next, attention is turned to the stability of the 
steady-state combustion regimes (19) relative to small 
fluctuations of temperature and oxidant concen- 
tration. Assuming ] y] << 1, and ]z] << 1, one obtains 
the following system of equations in the linear 
approximation : 

R, St 
-$+y[St*+St(l-R,)]-R”Stv+y 

* 

m  m  

X c cr gWFWy(t* +s-x) dx 1 F(s)r=(s) ds 
Jo \b / 

m 
dx)F(-4z(t~ +s--xl dx 

x F(s)r =(s) ds = 0 

$+z(R,St,-G,)+St,R”y 
* 

OD 
~(4 Wy(t+ + s - x) dx 

R St 
x F(s)r2(s) ds- 7 

X g(x)F(x)z(t* +s-x) dx 

x F(s)r=(s)ds = 0 

(20) 

(21) 

R =u!!!? ” ’ du u-u,’ 

din b 
R, = v,~ ~ 

dv v=v,’ 

aln G 
G, = us- 

dv u-v, 
(22) 

with the parameter R, representing the dimensionless 
energy of activation. Expressing y and z in the form 
y = y,exp (nt.J and z = z,exp (nt,) gives the spectral 
equation 

(n+St+St*-R,StZ)(n-G,+&St,,,Z) 

+StSt,,,R,R,I==O (23) 

where 

g(x) F(x) en@-+) dx F(s)r=(s) ds. 

(24) 

Equation (23) becomes applicable to the neutral stab- 
ility surface when n = iw’, where o” is a rational quan- 
tity. The correctness of introducing the above rep- 
resentation of y and z for equations (20) and (21), 
which do not belong to the objects of the classical 
stability theory, when studying the stability of the 
steady combustion processes is corroborated by the 
possibility of reducing these integrodifferential equa- 
tions to an autonomous system of ordinary differ- 
ential equations governing y,z and moments of the 
particle size distribution of different orders [ 131. Pro- 
vided that F = 1 or that a finite number of moments 
is taken into account at an arbitrary F, this system 
becomes finite. Thus, equation (23) actually deter- 
mines the neutral stability surface of steady-state com- 
bustion regimes in the space of parameters R,, R,, St, 
St,,,, St, and G,, depending also on the functional Y. 

4. I. Kinetic regime of burning 
Now, consider kinetic regimes of burning which 

approximately satisfy the Arrhenius law b w 
exp (-E/RT), F = 1. Though equation (23) has the 
rational root n = 0, the corresponding instability con- 
dition St+St* < 0 cannot be implemented in real 
processes. However, the oscillating instability with 
respect to disturbances having some non-zero fre- 
quency m” (here and hereafter the zero superscript 
marks the quantities that refer to the neutral stability 
surface) is also possible. Traces of the neutral stability 
surface and the corresponding oscillation period in 
the plane of parameters R, and St are shown in Figs. 
1 and 2. Calculations have been carried out for func- 
tions g(r) of the following types 

g(r) = g0P(r0---r) 64 

g(r) = gdl -r/rdP(ro -r) (b) (25) 

where P is the Heaviside function. 
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St 
FIG. 1. The curves of neutral stability for the kinetic regime 
of burning and particle influx rate, equation (29, (a) and 
(b) correspond to solid and dashed curves ; s0 = s(rO) = 10 ; 

I, St/Sr, = -0.7; 2, St/St, = -0.8. 

The instability region is determined by the 
inequality R, > Rt. When a hyperplane St = const. 
(along which the heat production does not change) 
intersects the neutral stability surface, the instability 
grows due to the increase of the derivative of 6 with 
respect to U, that is, due to an increasing temperature 
dependence of the chemical reaction rate. The cor- 
responding critical value Rz of the parameter R, is 
defined by the conditions of heat and mass exchange 
of the polydisperse assemblage of particles with the 
external media, thermal capacity, fuel influx rate and 
by its dispersivity. From Figs. 1 and 2 one can easily 
see that the increase in the parameter St,,,, that is, the 
growth of the influence of the oxidant concentration 

aon 

FIG. 2. The oscillation period on the neutral stability curve; 
nomenclature is the same as in Fig. 1. 

on the process, is a stabilizing factor. This effect has 
the following explanation. The injection of particles 
into the furnace first evokes an increase in its tem- 
perature and, hence, leads to the growth of the chemi- 
cal reaction rate and to progressive burning of both 
the particles and the oxidant. Thus, the decrease in 
heat production may occur not only as a result of 
the particle burning being not compensated by their 
injection, but also due to the decrease in the oxidant 
concentration exerting an additional stabilizing effect. 

4.2. Diffusive regime of burning 
Assume, for the sake of simplicity, that the particle 

influx rate is a delta-function corresponding to an 
assumption that monodisperse particles are injected 
(it should be noted that this does not mean that the 
fuel in the combustion chamber is also monodisperse). 
Traces of the neutral stability surface in the plane 
of the parameters R, and St for various values of 
parameters St, and R, are presented in Fig. 3. For 
this case b = b,,T312C and F = I/r. It is clearly seen 
that the decrease in the parameter St,,, (i.e. the increase 

(a) 

(b) 

0, 
IO-’ IO 102 

St 

FIG. 3. The curves of neutral stability for the diffusive regime 
of burning; (a) R, = - 10, (b) & = - 1. Solid curve 
corresponds to Sr, = -0.01, dashed curve to Sr, = -0.1, 

dashed-dotted curve to St,,, = - 1. 
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FIG. 6. The squared oscillation amplitude and the frequency 
shift depending on the Stanton number and the super- 
criticality. (a) The kinetic regime of burning, s(r,,) = 10, 
g(r) = g&,--r) : I, Sf/Sf* = -0.7; 2, Sf/Sr* = -0.8. (b), 
(c) The diffusive regime of burning, R,. = -0.01 ; solid curve, 

St, = -0.01 ; dashed curve, St,,, = -0.1. 

The above reasoning and calculation evidence that 
the origination of auto-oscillations due to the inherent 
inner instability of steady combustion regimes is able 
to change important operational characteristics of 
furnaces to a considerable extent without any vari- 
ations in constant external conditions. In these cir- 
cumstances, one may expect that the same will be even 
truer when these conditions are being varied in 
accordance with some prescribed periodic law. This 
can bring about, first, the change in the form of the 
stability region and also in the properties of the result- 
ing auto-oscillating regimes and, second, the estab- 
lishment of forced periodic or quasi-periodic regimes 
specific for non-linear oscillating systems. Both expec- 
tations happen to be true. External periodic influences 
can stabilize combustion systems and eliminate ran- 
dom pulsations being undesirable from technological 
considerations. They are also able to excite forced 
oscillations. Within new regions of instability of arti- 
ficially excited oscillations the parametric modulation 
causes phenomena of frequency locking and the 
occurrence of quasi-periodic oscillating processes. This 
gives an opbortunity for causing a rather drastic 
influence on the performance of combustion devices 
in practice in order to shift their operational charac- 
teristics in a desired direction. This is a main topic of 
the second part of this paper. 

responding to the unsteadiness of the thermal capacity 
of the mixture and to the influence of the oxidant 
concentration oscillations, leads to a fall in the ampli- 
tude and to a rise in the frequency of self-oscillations. 

The self-oscillations of the temperature and of the 
oxidant concentration give rise to oscillations of 
important processing parameters, such as the total 
number and mass of particles in the furnace, their 
mean size and surface, which are governed by the 
moments of the particle size distribution function of 
the appropriate order are to be calculated directly by 
using equation (15). The non-linearity of the system 
under consideration results in the differences between 
the time-averaged temperature, oxidant concentration GIFML, Moscow (1961). 
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